The consortium members will promote Repertorium’s outcomes through workshops, conferences, publications, and educational initiatives, advancing the fields of musicology, musical practice, and sound processing while making an important contribution to the creation of musical AI systems that can evolve a sense of European identity, tastes, culture, and values by training on its heritage.

Open Source

Resulting optical music recognition tools for medieval and classical manuscripts, music information retrieval medieval cataloguing tools, and instrumental sound source separation and sound field reconstruction testing materials will be licenced under Creative Commons licences (Attribution, Non-Commercial, Share Alike, CC BY-NC-SA) and delivered to public repositories. All training data will be licenced as public domain and shared to allow for the reproducibility of the research. In those cases in which partners intend to seek patents for their machine learning algorithms, sufficient materials will be granted to ensure the reproducibility of scientific results while protecting the partner’s intellectual property.

Outputs

Repos

SynthSOD-Baseline

Repository with the code for training and evaluating the baseline model of the SynthSOD dataset.

repertorium_mir

Algorithm for automatic detection of chants in medieval manuscripts images.

HQ-SOD-generator
gabc2mei

Transductor from GABC to MEI using ANTLR4

semi-automaticDemixing

Multichannel music source separation based on NMF for classical music

Software & Demos

Neumz JNABC

Publications

Mirco Pezzoli, Federico Miotello, Shoichi Koyama, Fabio Antonacci, “Low-Rank Adaptation of Deep Prior Neural Networks For Room Impulse Response Reconstruction”, In Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct 2025.

J. C. Albarracín Sánchez, L. Comanducci, M. Pezzoli and F. Antonacci, “Towards HRTF Personalization using Denoising Diffusion Models,” ICASSP 2025 – 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5, Hyderabad, India, 2025.

Fuentes-Martínez, E., Ríos-Vila, A., Martinez-Sevilla, J. C., Rizo, D., & Calvo-Zaragoza, J. (2026). “Aligned music notation and lyrics transcription. Pattern Recognition”, 170, 112094.

J. Garcia-Martinez, D. Diaz-Guerra, J. Anderson, R. Falcon-Perez, P. Cabañas-Molero, T. Virtanen, J.J. Carabias-Orti, P. Vera-Candeas “The Spheres Dataset: Multitrack Orchestral Recordings for Music Source Separation and Information Retrieval”, 2025.

E Fuentes-Martínez, D Rizo, J Calvo-Zaragoza. “New Challenges in Optical Music Recognition for Gregorian Chant: Aligned Music Notation and Lyrics Transcription”. Digital Technologies Applied to Music Research: Methodologies, Projects and Challenges. 27-29 June 2024, Faculty of Social Sciences and Humanities – NOVA University Lisbon

Olivieri M., Karakonstantis X., Pezzoli M., Antonacci F., Sarti A., Fernandez-Grande E. “Physics-informed neural network for volumetric sound field reconstruction of speech signals”.

F. Miotello, P. Ostan, M. Pezzoli, L. Comanducci, Al. Bernardini, F. Antonacci, Aug. Sarti “HOMULA-RIR: A Room Impulse Response Dataset for Teleconferencing and Spatial Audio Applications Acquired Through Higher-Order Microphones and Uniform Linear Microphone Arrays”. Accepted for publication at ICASSP 2024 – HSCMA Workshop.

J. Garcia-Martinez, P. Cabanas-Molero, P. Vera-Candeas, J.J. Carabias-Orti, A.J. Munoz-Montoro, “Integrating High Order Ambisonics And Deep Learning For Advanced Instrument Separation In Spatial Audio Applications,” 2025 33rd European Signal Processing Conference (EUSIPCO), Palermo, Italy, 2025.

P. Ostan, C. Centofanti, M. Pezzoli, A. Bernardini, C. Rinaldi, F. Antonacci, “Dynamic Real-Time Ambisonics Order Adaptation For Immersive Networked Music Performances”, 2025 33rd European Signal Processing Conference (EUSIPCO), Palermo, Italy, 2025.

E. Tunturi, D. Diaz-Guerra, A. Politis, T. Virtanen, “Score-Informed Music Source Separation: Improving Synthetic-To-Real Generalization In Classical Music”, 2025 33rd European Signal Processing Conference (EUSIPCO), Palermo, Italy, 2025.

Muñoz-Montoro, A. J., Pezzoli, M., Carabias Orti, J. J., Ranilla, J., & Vera-Candeas, P., International Workshop on Sound Signal Processing Applications 2025: Book of Abstracts. (IWSSPA 2025), Rota, Spain.

E. Fuentes-Martínez, A. Ríos-Vila, J. C. Martinez-Sevilla, D. Rizo, J.Calvo-Zaragoza (2025), “Aligned music notation and lyrics transcription”.

J. García-Martínez, D. Diaz-Guerra, T. Virtanen, A. Politis, J.J. Carabias-Orti, P. Vera-Candeas, “SynthSOD: Developing an Heterogeneous Dataset for Orchestra Music Source Separation”.

Pezzoli, M., Antonacci, F., & Sarti, A. (2023). “Implicit neural representation with physics-informed neural networks for the reconstruction of the early part of room impulse responses”.

Diaz-Guerra, D., Politis, A,, Miguel, A., Beltran, Jose R. and Virtanen, T. (2023) “Permutation Invariant Recurrent Neural Networks for Sound Source Tracking Applications”.

Cabanas-Molero, P., Munoz-Montoro, A., Carabias-Orti, J. and Vera-Candeas, P. (2023). “Pre-trained Spatial Priors on Multichannel NMF for Music Source Separation”. Forum Acusticum 2023.

Martinez Sevilla, Juan C. & Ríos Vila, Antonio & Castellanos, Francisco & Calvo-Zaragoza, Jorge. (2023). “A Holistic Approach for Aligned Music and Lyrics Transcription”.

Mirco Pezzoli, Julio Carabias-Orti, Pedro Vera-Candeas, Fabio Antonacci, Augusto Sarti. “Spherical-harmonics-based sound field decomposition and multichannel NMF for sound source separation”.

P. Diel., A.J. Muñoz-Montoro, J.J., Carabias-Orti, J. Ranilla. “Efficient FPGA implementation for sound source separation using direction-informed multichannel non-negative matrix factorization”.

F. Miotello, L. Comanducci, M. Pezzoli, A. Bernardini, F. Antonacci and A. Sarti, “Reconstruction of Sound Field Through Diffusion Models,” ICASSP 2024 – 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, Republic of, 2024, pp. 1476-1480.

European Signal Processing Conference (EUSIPCO) 26-30 August 2024. Lyon, France. L Comanducci, F Antonacci, A Sarti, “Interpreting End-to-End Deep Learning Models for Speech Source Localization Using Layer-wise Relevance Propagation”.

European Signal Processing Conference (EUSIPCO) 26-30 August 2024. Lyon, France. X Luan, M Olivieri, M Pezzoli, F Antonacci, A Sarti, “Complex-Valued Physics-Informed Neural Network for Near-Field Acoustic Holography”.

European Signal Processing Conference (EUSIPCO) 26-30 August 2024. Lyon, France. S Gonzalez, R Malvermi, MJ Kwan, S Zygmuntowicz, F Antonacci, A Sarti, “Features vs Bands: Statistical analysis between design features and spectral power for a set of culturally relevant violins”.

European Signal Processing Conference (EUSIPCO) 26-30 August 2024. Lyon, France. AJ Muñoz-Montoro, M Olivieri, M Pezzoli, JJ Carabias-Orti, F Antonacci, A Sarti, “Ray-Space constrained multichannel Nonnegative Matrix Factorization for Audio Source Separation”.

European Signal Processing Conference (EUSIPCO) 26-30 August 2024. Lyon, France. F Ronchini, L Comanducci, M Pezzoli, F Antonacci, A Sarti, “Room Transfer Function Reconstruction Using Complex-valued Neural Networks and Irregularly Distributed Microphones”.

Public Deliverables

D4.3 First prototype

D5.2 Tutorial of manuscript digital tools

D5.4 Complete prototype

D6.1 Communication, dissemination, and exploitation plan I

D6.2 Communication, dissemination, and exploitation plan II

D6.3 Communication, dissemination, and exploitation plan III

D7.2 Data Management Plan I

D7.3 Data Management Plan II